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Final shape of a drying thin film
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Drying processes of polymer solutions on a solid substrate enclosed by bank are studied in the slow limit of
the solvent evaporation. A simple model is proposed to examine the final shape of the film after drying.
Analytical expressions of the final shape in terms of the initial parameters are obtained. It is shown that the
craterlike and basinlike shapes appear as final shapes of the film depending on the initial parameters. The
“shape diagrams” which show parameter dependence of the final shape are presented in the absence/presence
of diffusion. The final shape of the film in the geometry without bank is also discussed.
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I. INTRODUCTION

Drying of thin liquid films or droplets placed on a solid
substrate is an everyday-life phenomenon, but its dynamics
is rather complex and involves many challenging problems
in soft matter physics, such as the coffee stain problems
[1-9], motion and pinning of contact lines [10-14], pattern
formation of deposits [15-19], effects of inhomogeneous sur-
face tension (Marangoni effect) [20-25], skin formation
[26-29], and buckling instabilities [30-33]. The problem is
also very important in various industrial applications, such as
manufacturing polymer films [34-36], inkjet printing
[37,38], and other printing and coating technologies. Various
investigations [34—-43] have also been done from this engi-
neering viewpoint.

For the industrial applications, an important problem is
how to control the shape of the final deposit left after the
liquid film which is a mixture of volatile solvent and non-
volatile solute (polymers or colloid particles) is dried. It is
known that the shape depends on the dynamics of the drying
process. If the evaporation of solvent is very fast, the solute
concentration near the surface increases rapidly and a “skin,”
a thin gel-like phase near the surface, appears [26,28]. In this
case, the deposit shape is essentially determined by the
growth of the skin phase. On the other hand, if the evapora-
tion is slow, the internal flow within the liquid phase plays
the major role. Deegan et al. [1] pointed out that the flow
induced by the solvent evaporation transports the solute to-
ward the edge (contact line) of the liquid and that this creates
a ringlike pattern of the deposit, the so-called coffee ring.

Systematic studies for the shape of the deposit of polymer
solution were conducted by Jung er al. [43]. They studied the
simplest case where (1) the contact line is pinned and (2) the
polymer solution can be regarded as Newtonian fluid. Even
with such simplification, they showed that the shape of the
final deposit changes from moundlike, craterlike, and basin-
like depending on the initial polymer concentration and the
initial volume of the film.

It has been a challenge to predict the final shape of the
deposit by computer simulation. So far, the modeling has
been done only for the case of slow evaporation (the case of
flow dominant regime). Ozawa ef al. [41] proposed a model
for the drying dynamics of a polymer solution droplet on a
substrate taking the effects of the gelation (or solidification)
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into account. The model involves a set of nonlinear partial
differential equations and requires numerical calculation for
the analysis. Accordingly, it is not clear which parameter
determines the final shape of the deposit.

In this paper, we shall propose a simple model by which
we can conduct the analysis almost analytically (or with
small numerical computation). The aim of this model is to
clarify the parameters which are relevant to giving the final
shape and to predict the shape in terms of the parameters. To
our knowledge, there have been no analytical theories to pre-
dict the final shape of the drying film. We present in this
paper a detailed analysis which predicts that there are three
types of the final shape depending on the initial parameters
concerned with the initial height of the film and the initial
polymer concentration, which is consistent with the recent
experimental results [43].

The construction of this paper is as follows. In Sec. II, we
describe our model. In Sec. III we analyze the model theo-
retically in the limit that the diffusion effect of polymer is
negligible and construct the “shape diagram” which predicts
the type of the deposit shape in terms of the initial param-
eters. We also show the shape diagrams for the case that the
diffusion effect is non-negligible. In Sec. IV we discuss the
result for the bankless case. Finally, we summarize our re-
sults and conclude this paper.

II. MODEL
A. Conservation laws

Consider drying of polymer solution on a solid substrate
enclosed by “bank” as illustrated in Fig. 1. The system is in
two dimensions with the horizontal coordinate x along the
substrate and the vertical coordinate z. The gas-liquid inter-
face z=h(x,t) is pinned at the contact points (*1,h,) at any
time ¢. Suppose that the system is isothermal and the latent
heat effects [44] can be ignored and that the aspect ratio of
the system is sufficiently small, that is, hy/l,<< 1, where [ is
a size of the system and h, is a height of the bank. We
assume that the diffusion length /,; of the polymer concentra-
tion ¢ is much larger than the film thickness and much
smaller than the system size, i.e., hy<<l;<<[,. Therefore, the
variation in ¢ in z direction is negligible so that the concen-
tration ¢ can be regarded as a function of x and time #: ¢

=¢(x,1).
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FIG. 1. Geometry and coordinates of our model system. A poly-
mer solution is spread on a solid substrate enclosed by banks whose
height is A, and the solvent evaporates from the free surface at z
=h(x,1).

Under the above assumptions we can express the local
conservations of solvent and solute as a couple of continuity
equations:
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where h=h(x,1) is the height of the free surface, J=J(x,?) is
the solvent evaporation rate which is a function of x and 7, in
general, D is the diffusion coefficient, and Q=0Q(x,1) is the
volume flux defined as

h(x,1)
Ox,1) = f u(x,z,t)dz, (3)

0

with u(x,z,7) as the x component of fluid velocity.

The above model is valid for the following situations.
Since the incompressibility of the fluid implies that du/dx
~Jo/ hy with a characteristic value J, of J, the magnitude of
the mean velocity of the fluid is of the order of Jyly/hg and
the characteristic time can be estimated as hy/J,. Hence the
diffusion length I, can be estimated as (Dhgy/J,)"". Therefore
the condition that Eq. (2) is valid is 1 <D/ (Jyhy) <(ly/ hy)?.
This condition is satisfied in practical situations. Indeed, the
typical experimental values [43] (D~3Xx 107" m?/s, J,
~5%107% m/s, hy~2X% 107 m, and I,~2X 10™* m) lead
to D/ (Jyhg) ~3 X 10 and (Iy/ hy)> ~ 10%.

From Egs. (1) and (2), we obtain

i¢ P

h—+Q

_9(,9¢
at ax  dx (Dh ax) +J¢. “

Equations (1) and (2), or equivalently, Egs. (1) and (4), are
basic equations which describe the time evolution of the
shape of the film and the concentration of polymers in the
drying films. However, Q and J are still unknown. We will
give expressions to these quantities below.

B. Simplification of the problem

In the case that h(x,t) slowly varies in x (dh/dx~ hy/l,
<1), it is usual to use the lubrication approximation for
Newtonian fluids [45]. This gives the following expression
for the flux Q(x,1),
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where v is the interfacial tension between the gas and the
liquid and 7 is the shear viscosity of the liquid.

The evaporation rate J(x,t) can be derived from the flux
of the solvent in the gas phase near the gas-liquid interface.
The flux should be determined by solving the diffusion equa-
tion of the solvent concentration in the gas phase under the
boundary conditions which depend on the polymer concen-
tration ¢ in the liquid phase near the interface [26,29].

The above argument leads to a complex moving boundary
problem of nonlinear partial differential equations. It is pos-
sible to carry out a numerical simulation of Egs. (1) and (2)
using Eq. (5) together with the diffusion equation of the sol-
vent concentration in the gas phase to obtain the evaporation
rate [46]. However, it is difficult to have an overview by such
numerical simulations. In order to see how the final shape is
affected when the drying conditions are changed, it is pref-
erable to have a simple analytical theory. In the following,
we shall construct such a theory.

For our purpose of predicting the final shape qualitatively,
we take into account only what we think the essential points
of the drying process. These are the following: (i) the evapo-
ration induces the outward flow [1] in the liquid phase which
transports the solute to the edge of the system. (ii) The flow
of the liquid and the evaporation of the solvents are strongly
suppressed when the polymer concentration ¢ reaches a cer-
tain value ¢g, which we call the “gelation concentration.”
Notice that ¢, is not a rigorously defined concentration: it is
a concentration at which the viscosity increases sharply
[41,43] and the elastic effect of the solution becomes impor-
tant [29]. Taking these facts into account, we simplify the
problem under the assumptions below.

The first assumption is that the evaporation rate J, is
much smaller than the velocity y/ 7 induced by the capillary
force, that is, Ca— 0, where the capillary number Ca is de-
fined as

J
Ca= 20 (6)

Y
In this case h(x,t) will be close to an equilibrium shape at
each time. Hence we can make an approximation, instead of
solving Eq. (1) with Eq. (5), as

h(x,t) = = a(f)x* + b(). (7)

This is a crude approximation for the shape evolution. (For
more general cases, see Appendix A.) The time-dependent
coefficients a(z) and b(z) in Eq. (7) should be determined by
the conservation law Eq. (1) with a geometrical condition at
the edges of the system.

The second assumption is that the evaporation rate is con-
stant in the solution phase, whereas it vanishes in the gel
phase, that is,

{JO (in solution),
J(x,1) = . (8)
0 (in gel).

Moreover, we assume that ¢=¢, and Q=0 in the gel phase.
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As we mentioned above, the evaporation rate should be
determined by solving the diffusion equation in the gas
phase, which may lead to a divergence of J at the edges of
the liquid region in a certain situation. However, this diver-
gence might be suppressed when the edges are gelation
fronts because J depends on ¢ at the gas-liquid interface and
considerably decreases as ¢ approaches ¢, [29]. We cannot
specify an explicit functional form of J(x,t) without solving
the diffusion equation in the gas phase. Therefore, it might
be acceptable, as a first step, to assume the uniform evapo-
ration rate in order to see an effect of the outward flow in-
duced by pinning of the contact points on the shape of the
final deposit. It should be noted that the divergence of J at
the edges enhances the outward flow but is not expected to
change qualitatively our results shown in this paper. The di-
vergence of J should play an important role in the motion of
contact lines [10-14] and other phenomena, which is out of
the scope of the present paper.

C. Simplified model
1. Pregelation regime

Here we describe our model in the early time regime
where a gel-like phase does not appear (¢ < ¢,). Integrating
Eq. (1) over [0,x] after substitution of Eq. (7) into Eq. (1),
the conditions Q(0,7)=0Q(ly,)=0 lead to

da 3
Pia 2—1(3)j(lo,f), )
where
Jx,t) = J dx"J(x',1) (10)
0

is the integrated evaporation rate. Here we have used the
relation h0=—a(t)l(2,+b(t). Then we have

< 2
Q@ﬂ:%?%l—%)—aﬂnm (11)
0
where
_ 1 (lo
J(t) = —f dxJ(x,t) (12)
lyJo
and
0T (x,1) = jxdx’[J(x',t)—j(t)]. (13)
0

With the second assumption in the previous section, we ig-
nore the inhomogeneity of the evaporation rate 57(x,7) and

the time dependence of J(¢). Then we have, putting J(r)=J,
with a constant J,=0,

J 2
QL0=§%1—%> (14)

and
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FIG. 2. (Color online) Schematic of the model system in the
postgelation regime. The gel phase region [&(r) =x=1;] begins to
develop from the edge (x=1).

3
1) = - —J t, 15
a(r) = ay 22’ (15)
3
b(t)=b0—§.]0t, (16)

with initial values a, and b, for a(r) and b(z), respectively.
Note that Q(x,7) which leads to the so-called outward
flow is independent of time in this case (the mean flow Q/h
depends on time). It should be emphasized that the outward
flow is a result of the pinning of contact points and exists
even if the evaporation rate is uniform. The time evolution of
¢(x,1) is described by Eq. (4) with Egs. (7) and (14)—(16).

2. Postgelation regime

In the above model, the mass of polymers will move to-
ward the edges of the system (x= *[;) due to the outward
flow. We can expect in most cases that the concentration of
polymers at x=[; rapidly increases and reaches the gelation
concentration ¢, above which a gel-like phase appears. In
the following, we restrict ourselves to considering the case
that the gel phase region begins to develop from the edge so
that the position x=§&(#) of the gelation front at time  mono-
tonically decreases from &=, to O (see Fig. 2). (Hereafter we
consider the region x=0 only due to the symmetry.) In some
parameter region, however, the gelation may take place at the
center (x=0). In this case we can switch to another model
shown in Appendix A and will use the model in the follow-
ing numerical simulations.

The second assumption in the previous section reads in
this case

Jo [0=x<é&0)]
KL”Z{O[an5xs%L (17)
and

dx.0)= by, [£(1) = x=1o]. (18)

Furthermore we assume that Q(x,#)=0 in the gel phase. Then
we obtain

Jo (1—’“—2) [0=x < &0)]
otn={2"\""g) ="
0 [&() =x =],

provided that &(r) is given.

(19)
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Let
{(t) = h(&,1) (20)

be the height of the film at the gelation front x=£&(z) at time
t. Because of the geometrical constraint at x=¢, Eq. (7) can
be written as
2
h(x,t)==(b—={)— +b,
&
where b is given by Eq. (16) which still holds after the ge-
lation occurs. From Egs. (4) and (17)—(21), and the boundary
condition d¢p/dx=0 at x=0, we can determine a trajectory of
[&(r),&(r)] that is a final shape of the film after drying.
Note that conservation of the total amount of polymers
implies

O=x=9, 1)

Dh(x)ZE =0l 0den, [ED)  (@2)

This means that d¢/dx=0 at x=£(r) for finite D because of
0(&,1)=0.

III. THEORETICAL AND NUMERICAL ANALYSES

In this section, we analyze the simplified model given in
the previous section. In the case that the diffusion effect is
negligible (D=0), we can solve the problem analytically and
can predict the final shape of the drying film in terms of
initial shape and concentration of the polymer solution. If the
diffusion is non-negligible, it gives a correction to this result.

The mathematical problems to be solved in our model are
summarized as follows. For D=0, we solve the initial value
problems of the first-order partial differential Eq. (4) in the
two time regions: (a) in the pregelation regime 0 <7<t, with
the gelation time 7, (see the next section), we solve Eq. (4)
with Egs. (7) and (14)—(16) for the initial value ¢(x,0)= g,
with a constant ¢. (b) In the postgelation regime 1> 1¢,, we
solve Eq. (4) with Egs. (21) and (16)—(20) for the initial
value ¢(x,1,)= &(x) given as a solution of the problem (a). In
these cases boundary conditions are not necessary. For the
numerical calculations, however, we need the boundary con-
dition d¢/dx=0 at x=0 due to the symmetry.

For D # 0, we solve the boundary value problems of the
second-order partial differential Eq. (4) in the two time re-
gions: (c) in the pregelation regime 0<tr<(t,, we solve Eq.
(4) with Egs. (7) and (14)—(16) under the boundary condi-
tions d¢p/dx=0 at x=0 and [, for the initial value ¢(x,0)
=¢y. (d) In the postgelation regime 7>1¢,, we solve Eq. (4)
with Egs. (21) and (16)—(20) under the boundary conditions
dpldx=0 at x=0 and &(r) for the initial value ¢(x,z,)
=¢(x) given as a solution of the problem (c).

The method which will be shown below can be applied
for the system with the axial symmetry. The main results of
the analysis for that system are presented in Appendix B.

A. No diffusion case

1. Numerical simulation

Before the theoretical analysis, we show some results of
numerical simulations of the simplified model. In this section
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FIG. 3. (Color online) Typical time evolution of the profile of
h(x,1) in the liquid region and that of the deposit in the gel region.
Solid lines show the total profiles of drying films in both liquid and
gel region. The three solid lines correspond to the different times
(upper and lower lines correspond to the earlier and later times,
respectively). Closed circles indicate the point [&(z),{(r)] at the
three different times. In the liquid region (x<<¢) the profile is ex-
pressed as Eq. (21) and in the gel region (§=x<1) it is a part of the
trajectory of [&(2),L(1)].

we choose [y, hy, and hy/J,, as units of space in x direction,
that in z direction, and time, respectively. In these units, Eq.
(4) without the diffusion term is written as

h&—gb+Qa—¢

o 9o TP (23)

where h, Q, and J are now the dimensionless functions given
by the same expression of Eq. (7) or Eq. (21) with

a(t) =ag— %t, (24)
b(1) =by— %t, (25)

f@xj [0 =x < &0)]

on=12\" " & (26)
0 [E)=x=1],
and
1 [0=x<&0]
J(x”):{o (e =x=1]. @)

In the above expressions we should understand £é={=1 in the
pregelation regime.

In the pregelation regime, we numerically solve Eq. (23)
with Egs. (7) and (24)—(27) under the boundary condition
d/ dx=0 at x=0 for the initial state ¢(x,0)= ¢, with a con-
stant ¢o. When the gelation starts, we switch to the postge-
lation model [alternatively using Egs. (A1)—(A5)] and we
obtain a final shape of the film as a trajectory of [&(r), {(z)].
In Fig. 3 we show typical profiles of drying film at three
different times. In the liquid region (x<§) the profile is ex-
pressed as Eq. (21) and in the gel region (é=x<1) it is a
part of the trajectory of [&(z), {(¢)]. It can be shown that
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FIG. 4. (Color online) Time evolution of the height and the
concentration distribution obtained by the numerical simulation of
the simplified model for the initial values (¢/ ¢g,b0)=(0.4,4) in
the absence of diffusion. (a) Profiles of h(x,?) at several times are
plotted as functions of x. The time increases from the top line to the
bottom line. (b) Profiles of ¢(x,7) at several times are plotted as
functions of x. The time increases from the bottom line to the top
line.

x|ty Et)

where éEdé/ dt and § =d{/dt. This means that the profile
h(x,f) in the liquid region is smoothly connected to the tra-
jectory of [&(r),(z)] at the gelation front.

In Fig. 4 we show the profiles of A(x,7) and ¢(x,r) at
several times for the initial values (¢y/ ¢,.by)=(0.4,4). We
can see that after rapid increase in ¢ near x=1 the gelation
starts at x=1 and the final shape which has a peak in 0<x
<1 appears. In the case that both ¢,/ ¢, and b, are small, we
observe that the gelation starts at x=0 (Fig. 5). This is not the
case that another type of final shape arises, although the ob-
served shape is a little distorted. In the following analysis we
do not consider this case.

Figure 6 shows the parameter dependence of final shape.
We observe three types of the shape: (i) the shapes of mono-
tonically increasing in x (“basin type”), having a peak in
0<x<I, (“crater type”), and monotonically decreasing in x
(“mound type”), depending on the initial parameters

(¢o/ bgby)-

(28)

2. Pregelation regime

Here we analyze theoretically the dynamics in the pre-
gelation regime described by Egs. (7) and (23)-(27) with
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FIG. 5. (Color online) Time evolution of the height and the
concentration distribution obtained by the numerical simulation of
the simplified model for the initial values (¢y/ ¢,,bo)=(0.2,2) in
the absence of diffusion. (a) Profiles of h(x,?) at several times are
plotted as functions of x. The times increase from the top line to the
bottom line. (b) Profiles of ¢(x,7) at several times are plotted as
functions of x. The time increases from the bottom line to the top
line.

£={=1. Equation (23) and the initial condition ¢(x,0)= ¢,
form an initial value problem of a linear partial differential
equation, which can be solved by the method of characteris-
tics [47] as follows. Consider a curve parametrized by 7 in
(x,1) space. The total differentiation of ¢=¢(x,r) along this
curve is given as

d¢ _d¢dx
dr  odxdr

9 dr

. 29
ot dt (29)

Comparing this with Eq. (23) we obtain a set of ordinary
differential equations as

j—;: h(x,1), (30)
< = o), (31)
o _
=9 (32)

Since there is a unique solution of Egs. (30)—(32) for a given
set of the initial values which we put (x,¢,¢)=(s,0, ¢,) at
7=0 with 0=s=1, a set of the characteristic curves (trajec-
tories of the solution) with the parameter s forms a surface
¢=¢(s,7) in (s, 7, ¢) space. The parameters s and 7 can be

021603-5



OKUZONO, KOBAYASHI, AND DOI

(a) s
251 0o/ 0g=0.8

0 01 02 03 04 05 06 0.7 o8 09 1

X

0 01 02 03 04 05 06 07 08 09 1
x

FIG. 6. (Color online) Initial parameter dependence of the final
shapes obtained by the numerical simulation of the simplified
model in the absence of diffusion. (a) The final shapes { are plotted
as functions of x for the initial values (¢/ g, b0)=(0.2,3), (0.4, 3),
(0.6, 3), and (0.8, 3) from the bottom line to the top line. (b) The
final shapes ¢ are plotted as functions of x for the initial values
(Po! g,bo)=(0.4,2), (0.4, 4), (0.4, 6), and (0.4, 8) from the bottom
line to the top line.

considered as independent coordinates in (x,¢) space, if the
mapping s=s(x,7) and 7=17(x,7) is unique. Therefore, if such
mapping exists, we can obtain ¢=¢(x,7) as a function of x
and 7 which should coincide with a solution of Eq. (23). In
Fig. 7 we plot several curves of s(x,f)=const and 7(x,?)
=const obtained from Egs. (33) and (34) below.

Equations (30)—(32) can be understood, physically, as fol-
lows. Imagine the motion of a fluid element with volume (or

1

0.8

06 |
t(s,T)
0.4

0.2

FIG. 7. Plots of curves s(x,#)=const and 7{x,?)=const obtained
from Egs. (33) and (34) with ap=1.
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area) h(x,f)Ax at position x(¢) and time ¢. The element moves
along the flow with a speed Q/h, i.e., dx/dt=Q/h. The vol-
ume of element is decreasing in time due to the evaporation:
d(hAx)/dt=—JAx, whereas the amount of polymers is con-
served: d(¢phAx)/dr=0, which leads to d¢/dt=J/h. Intro-
ducing 7 as dr=hdr, we obtain Egs. (30)—(32).

Now we solve Egs. (30)—(32) for the initial values: =0,
x=s, and ¢= ¢, at 7=0. We obtain r=1(s, 7), x=x(s, 7), and
¢=d(s, 7) as functions of s and 7:

2 S| 1- -5
Hs,7) = gao[l - (i) ] _;{2()6_3)“111 +i—ln1 +s5]
(33)
x(s,7) = s[5+ (1 = s?)e™ 12, (34)
and
¢(S’ T) = ¢OeT- (35)

The last equation ensures that ¢(s,7)>0. This is obvious
physically, because the concentration of a fluid element al-
ways increases under the positive evaporation of the solvent
(Jo>0) until ¢ reaches ¢, where the evaporation rate van-
ishes. Note that 7 is an increasing function of 7 as long as
h>0 and that at s=0 and 1 we have

xaﬁzg%a—fwﬁ, (36)

H(l,7)=r. (37)

The time #,=lim,_., #(0, 7)=2by/3 corresponds to the time
when & at x=0 approaches 0, i.e., 1(0,7,)=0.

If we can eliminate 7 and s from Egs. (33)—(35), we ob-
tain ¢ as a function of x and ¢. Unfortunately, we cannot
perform that analytically but only numerically. However, we
can know behaviors of ¢ at special points x=0 and 1 ana-
lytically. We find

-2/3
$(0.0) = %[?} , (38)
0
B0 = e (39)

Equations (38) and (39) suggest that the gelation will start at
x=0 or 1 depending on the value of b,. There is a cross point
(¢".1") defined as ¢(0,1")=p(1,t")=¢" (*>0). If ¢*> ¢,,
the gelation takes place at x=1, otherwise it takes place at
x=0. In Fig. 8 we show the parameter regions in (¢y/ ¢, b)
plane where the gelation starts at x=0 (lower region) or 1
(upper region).

3. Postgelation regime

In the postgelation regime #>1¢,, where the gelation time
t, is defined as t,=1n(¢,/ ¢), the time evolution of the sys-
tem is described by Eq. (23) with Egs. (21) and (25)—(27).
We should solve Eq. (23) in 0 <x<<&(¢) for the initial value
¢(x,0)=(x) which is the concentration profile when ¢ at
x=1 reaches ¢,. Hereafter we shift the origin of time so that
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gelation starts at x=1

gelation starts at x=0
OO 0.1
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FIG. 8. (Color online) Parameter regions in (¢y/ ¢,,b) plane
where the gelation starts at x=0 (lower region) or 1 (upper region).

the gelation starts at #=0. It is hard to solve this problem
analytically, since in order to solve Eq. (23) we need infor-
mation on the position &(7) and the height () of the gelation
front which should be determined by solving the equation
itself. In the following we discuss about a final shape of the
film by analyzing a trajectory of [&(z), £(2)].

Consider the motion of a fluid element starting from x
=s at t=7=0 which is described by Egs. (30)-(32) for the
postgelation model where 4 and Q in these equations now
depend on &(r) and {(z). Position of the fluid element x(s, 7)
can be obtained from Eq. (31) with Eq. (26) as

1 e_T+de , e (=) (40)
= —= T —’
xz(ss T) S2 0 gz(t(ss T’))

provided that &(¢) is given. From Eq. (32) we have

b(s,7) = Pls)e” (41)

with the initial concentration profile ¢(s). Hence the fluid
element becomes a gel at 7=7,(s), where

T,(s) = ln[%ﬁg—] (42)
@(s)

Since x(s, 7,(s)) should be equal to £(#(s, 7,(s))), we have the
integral equation for £ as
1 e’ ngd e “3)
- —=—5+ 7.
gz(t(s’ Tg)) S2 0 gz(t(s’ T’))
If we make a rough approximation that #(s,7) does not de-
pend on s, namely, h(x,?) is only a function of f [see Eq.
(30)], we can transform Eq. (43) into the differential equa-
tion as

d 3
de_ (§> ) (44)
ds s/ ¢,
where ¢ is a function of s through 7,(s). A solution of Eq.
(44) which satisfies the condition that é=1 at s=1 is
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0.7¢

FIG. 9. (Color online) Comparison of the theoretical curves for
the film profiles with the numerical data. The theoretical curves for
(¢o/ dbg.bp)=(0.5,2) and (0.5,3) are plotted with the lower and up-
per solid lines, respectively. The numerical data for (¢y/ ¢,,bo)
=(0.5,2) and (0.5,3) are indicated with the open and closed circles.

1 <~/ -1/2
&(s) = |:1+2f ds’%} . (45)
s g

Since { can be regarded as a function of the coordinate x, the
mass conservation Eq. (2) with D=0 implies

1 1
f ds' g(s"Vh(s") = ( )dx¢g§(x), (46)
s &(s

where
h(s) = — @ys* + by (47)

is the initial shape of the film with @,=a,—(3/2)t, and by
=by—(3/2)t,. Differentiating Eq. (46) with respect to s and
using Eq. (44), we obtain { as a function of s,

s\
{(s)= (‘) h(s). (48)
&

Equations (45) and (48) for 0<<s<1 give a parametric ex-

pression of a final shape of the film.

In Fig. 9 we show the final shapes of the film given by
Eqgs. (45) and (48), where the initial profiles of concentration
&(s) are obtained by solving Egs. (33)—(35), numerically, for
the initial values (¢y/ ¢,,b0)=(0.5,2.0) and (0.5,3.0). We
also plot in the same figure the data obtained by numerical
simulations of Egs. (21), (23), and (25)—(27) for the same
parameters as above. The theoretical expressions well fit the

numerical data for the case that E(s) is nearly constant in s
(ay=0) as expected. Although the theoretical curves deviate
from the numerical data for @y # 0, the qualitative feature of
the curves, namely, the shapes coincide between them. In-
deed the “phase boundary” related to the shape change in the
parameter space (¢y/ ¢,,bp) (Fig. 10) is not affected by the
above approximation.

4. Final shape

Now we can discuss the initial parameter dependence of
the final shape expressed as Egs. (45) and (48). In the fol-
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FIG. 10. (Color online) The shape diagram showing the initial
parameter dependence of the final shape in the absence of diffusion.
The theoretical curve (solid line) is compared with the numerical
data (open and closed circles) in the parameter space (¢! b, by).
Open or closed circles indicate the values of parameters ( ¢,/ ¢g,b0)
for which the final shape of the film is basin type or crater type,
respectively. Here b is the initial height of the film scaled by A,
that is, b(0)/h using the expression of Eq. (16). The dashed line is
the same curve as shown in Fig. 8 below which the gelation starts at
x=0.

lowing, we only consider the case that d¢p/ds>0 for 0<s
< 1. In order to know a qualitative shape of the deposit, it is
enough to discuss the functional form of { as a function of s
instead of that as a function of &, since d&/ds>0 as shown in
Eq. (44). From Eq. (45) we can show that (s/£)* is a mono-
tonically increasing function of s for 0 <s<<1. Therefore Eq.
(48) suggests that there are three types of the shape: (i) Z(s)
is monotonically increasing, (ii) {(s) has a maximum point in
0<s<1, and (iii) {(s) is monotonically decreasing, corre-
sponding to the basin, crater, and mound types, respectively,
as obtained by the numerical simulations. The parameter re-
gion in which one of the above three types appears is deter-
mined as follows. When a,=0, or equivalently,

3
bO =1- _]n@ (49)

2 gbg’

h(s) is not decreasing in 0 <s<<1. In this region the shape of

basin type will appear. When d,>0, h(s) is a decreasing
function and {(s) has a maximum point in 0 =<s<1. The last
statement can be shown as follows. From Eq. (48) {(s) has
an extremum at s=s" which is a solution of the equation

’ ]/’?
£iZ=0, (50)
8§ h

with g(s)=(s/ &3, g’ =dg/ds, and h' =dh/ds. Since g'(s)
>0 for 0<s<1, g’'(0)=g'(1)=0, h'(s)<0 for 0<s=1,
1'(0)=0, and g"(0)= provided that ¢"(0)>0, Eq. (50) has
two solutions s=0 and s* with 0<<s*<1. Furthermore, we
can show that ¢’(1) <0. Therefore, {(s) takes a maximum at
s=s", that is, the shape of crater type appears if d,<0. The
shape of mound type will not appear in this model except for

the case that {=s, namely, ¢(s)=¢,, and @,>0.

PHYSICAL REVIEW E 80, 021603 (2009)

In Fig. 10 we show the initial parameter dependence of
the final shape, which we call shape diagram, obtained by the
above theoretical analysis together with the result of the nu-
merical simulations. The theoretical prediction agrees well
with the numerical result, as expected. These results are con-
sistent with the experimental results [43].

The dashed line in Fig. 10 is the same curve as shown in
Fig. 8 below which the gelation starts at x=0. This curve is
always below the theoretical phase boundary (solid line),
which implies that the phase boundary is not affected by
whether gelation starts at x=0 or 1. However, we observe
that the numerical data slightly deviate from the theoretical
curve (solid line) at small ¢/ ¢b,. This is due to the fact that
in that region the gelation fronts appear from both sides (see
Appendix A). Although the theoretical analysis cannot be
applied for such complicated situations, the shapes of final
deposits obtained numerically are not so largely deformed
from those in the normal cases.

B. Effect of diffusion

In the presence of diffusion (D #0) it is hard to perform a
theoretical analysis. Here we carry out the numerical simu-
lation of our model with a finite diffusion constant D, or a
finite Péclet number Pe, and discuss effects of diffusion on
the final shape of the film. The numerical method is the same
as before except that now we solve

i I d ( aq'))
h—+Q—=Pe' e—|h— | +J¢, 51
ot Q ox ox\ Jx ¢ 5D
instead of Eq. (23) under the boundary conditions d¢/dx
=0 at x=0 and 1, where the Péclet number Pe and the aspect
ratio of the bank geometry € are given as

Jol h
Pe="2" and e= . (52)
D Iy

In Fig. 11 we show the shape diagrams for Pe™' €=0.01 and
1. We can see that the parameter region of basin type be-
comes wider as Pe™! € is larger and the region of mound type
appears for Pe™! e=1, which never appears in the absence of
diffusion. This result is reasonable because the diffusion
tends to homogenize the concentration field ¢(x,7) contrary
to the outward flow which causes inhomogeneous distribu-
tion of ¢(x,7) under the solvent evaporation. Since Pe™! €
gives an estimate of degree of the diffusion flux relative to
the flow in this system, the diffusion process dominates the
dynamics of drying process when Pe™! €>1, which gives
rise to appearing the shape of mound type.

IV. BANKLESS SUBSTRATE

Here we discuss the shape of deposit without bank geom-
etry. We assume that the contact line is still pinned even if
there is no bank. This situation corresponds to the case /g
=0 in our model. In this case we can obtain the explicit form
of ¢(x,7) in the pregelation regime as, using the dimension-
less variables,
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FIG. 11. (Color online) The shape diagram showing the initial
parameter dependence of the final shape obtained by the numerical
simulations for Pe™! €=0.01 (a) and 1 (b). Open circles, closed
circles, and triangles indicate the values of parameters (¢y/ ¢, ,b)
for which the final shape of the film is basin type, crater type, and
mound type, respectively. The solid line is the theoretical curve
below or above which the shape of basin type or crater type appears
in the absence of diffusion.

b—2/3 (l) _ x2

olx,1) = d’OT’ (53)

where b(t) is given by
3
b(t)=1- 2" (54)

Here we have chosen the initial height of the film b, as a unit
of space in z direction instead of hy and by/J, as a unit of
time. Equation (53) shows that ¢(x,t) diverges at x=1 for
t>0. This implies that the gelation starts on the contact line
at 1=0.

Using Eqs. (45) and (48) with ¢(s)=d,, we obtain the
final shape { as a function of &,

e'(1-8)
[§2+ q)—l(l _ 52)]5/2’

where ®= ¢/ ¢,. Since a profile of the film is scaled by
its initial height b;, Eq. (55) includes only one parameter
®. The profile of (&) changes depending on the value of ®.
We can show that if ®<<3/5, (&) has a crater-type shape,
otherwise, it has a mound-type shape. In Fig. 12 we show

{= (55)
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FIG. 12. (Color online) Functional forms {(£) given by Eq. (55)
for ®=0.4, 0.6, and 0.8.

the functional forms of (&) given by Eq. (55) for a few
values of ®.

V. CONCLUDING REMARKS

In this paper we have proposed a simple model which
describes the drying processes of polymer solutions on a sub-
strate taking into account the gelation of the solutions in the
limit of Ca— 0. We have analyzed theoretically the model to
predict a final shape of the film in the bank geometry. In the
absence of diffusion (Pe— ), there are two parameters in
our model which are the initial polymer concentration rela-
tive to the gelation concentration, ¢/ d)g, and the initial
height of the film relative to the height of the bank, b,/ .
We have obtained theoretical expressions Egs. (45) and (48)
for the final shape of the film in terms of the concentration
and the film profiles when the gelation starts at the edge of
the film. The final shape is determined by the initial param-
eters ¢/ ¢, and b,/ hy. Depending on these parameters, two
types of the final shape appear which are the basin type and
the crater type. The boundary between the parameter regions
in which the basin-type shape and the crater-type shape ap-
pear is given by Eq. (49). These theoretical predictions quali-
tatively agree with the experimental results [43]. In the pres-
ence of diffusion, we have shown numerically that the region
of the crater-type shape becomes narrower and the region of
the mound-type shape appears for large Pe™'. We have dis-
cussed the final shape of the film in the geometry without
bank. In this geometry ¢,/ ¢, is the only parameter which
determines the final shape in the absence of diffusion and has
a critical value above (below) which the mound-type (crater-
type) shape appears.

We believe that these results give basic information for
some practical applications. In this paper we do not consider
the following cases: (i) Ca is finite; (ii) the solvent evapora-
tion rate depends on the distribution of the solvent in the gas
phase surrounding the liquid films or droplets. These will be
important subjects in the future.
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APPENDIX A: EXTENDED MODEL

In the model shown in Sec. II we have assumed that the
gel-like phase begins to develop only from the edge (x=1)
of the system. However, it may develop also from the center
(x=0). In order to carry out numerical simulations in both
cases, we extend our model as follows. Let &, and & be the
positions of the gel fronts propagating from the center to the
edge and the edge to the center, respectively. Assume that
#(x,t)=¢, and Q(x,1)=0 in the gel region 0=x=§; and
& =x=I, and that the film profile h(x,?) in &<x<§ has
the following form:

h(x,t) = —a(0)x® + c(t)x + b(). (A1)
The same argument as in Sec. II leads to
J
Olx,1) =~ mu— E)x—E&)(2x =& - &) (A2)
for §<x<§,
da 6.]0
— =, A3
dt (& - 50)2 (43)
b=l +aél - cé, (A4)
and
c=a(é+§&)+ 1o (A5)

&i-&

where {y=h(&,r) and {,=h(£,,r). We can numerically
solve Eq. (4) with Egs. (A1)-(A5) under the same boundary
conditions as before.

APPENDIX B: AXIAL SYMMETRIC SYSTEM

For the system with the axial symmetry we can perform a
theoretical analysis with the same argument as shown in Sec.
III. Here we show the main results.

Consider the system created by the rotation of the system
shown in Fig. 1 around z axis. In this system h=—a(f)r’
+b(f) now expresses a paraboloid of revolution, where r is
the radial coordinate. The conservation laws in the absence
of diffusion are now written, in the dimensionless form, as

oh 190

E*?E(’Q):‘J’ (B1)
¢ 99 _

h(%+Qﬁr—J¢>. (B2)

Assuming that
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I"2
h(r,t)=(b—§)(1—?)+§, (B3)
1 [0=r<é&Qp]
)= {0 [)=r=1], (B4)

we have

b(t) = by - 21, (B5)

2
0= g(l-;) [0=r< &0)]

0 [Et)=r=1].

(B6)

In the pregelation regime (é=¢=1), we can solve Eq. (B2)
for the initial condition ¢(r,0)= ¢, under the boundary con-
dition d¢p/ Ir=0 at r=0 using the same method as in Sec. III.
We obtain, as counterparts of Egs. (33)—(35),

4
t(s,7)=%{l—<§) ]—%{rz—szﬂn(g) —T],

(B7)
r(s,7) = s[s*+ (1 - s?)e 712, (B8)
&(s,7) = pe”. (B9)
At r=0 and 1, we have
~12
¢(0,T)=¢o[$] , (B10)
0
P(1,7) = e’ (B11)

In the postgelation regime, we have the same expression as
Eq. (45) for &(s). Since the mass conservation Eq. (46) now
becomes

1

dr2mre,{(r),
&ls)

1
J ds'2ms' (s h(s') = (B12)

we obtain

s\~
L) = ¢ h(s), (B13)
where h(s) is given by Eq. (47) with ay=ay—2t, and by
=by—2t,.
The phase boundary between the basin-type shape and the

crater-type shape in the initial parameter space is now given
by

(B14)

For the geometry without bank the concentration profile is
obtained as

b_l/z(t) _ r2

o(r,t) = ¢OT, (B15)
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instead of Eq. (53), where b(¢) is given by
b(t)=1-2t. (B16)

The final shape of the film is obtained as

PHYSICAL REVIEW E 80, 021603 (2009)

®'(1-2)
[E+0 (-2

The critical value of ® at which the final shape changes from
the crater type to the mound type is 2/3.

{= (B17)
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